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Abstract—Profiling of Patient-Derived organoids is 

necessary for drug screening and precision medicine. This step 

requires accurate segmentation of three-dimensional cellular 

structures followed by protein readouts. While fully 

Convolutional Neural Networks are widely used in medical 

image segmentation, they struggle to capture long-range 

dependencies necessary for accurate segmentation. On the other 

hand, transformer models have shown promise in capturing 

long-range information across domain boundaries. Motivated 

by this, we present 3D-Organoid-SwinNet, a unique 

segmentation model explicitly designed for organoid semantic 

segmentation. We evaluated the performance of our technique 

using an Organoid dataset from four breast cancer subtypes. 

We demonstrated consistent top-tier performance in both the 

validation and testing phases, achieving a Dice score of 94.91 

while reducing the number of parameters to 21 million. Our 

findings indicate that the proposed model offers a foundation 

for transformer-based models designed for high-content 

profiling of organoid models. 

Keywords—3D organoid segmentation, Transformers, High 
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I. INTRODUCTION 

Organoid models have emerged as a powerful tool for 
cancer therapeutics and investigating biological processes [1-
4]. The scope of drug screening in cancer therapeutics is not 
limited to apoptotic assays but also differentiation to a 
phenotype with a better prognosis [5]. In 2D monocultures, 
cells are exposed only to neighboring cells, attached to a 
plastic substrate, and lack access to the extracellular matrix 
(ECM).  However, cells in 3D organoid models are organized 
in a three-dimensional structure, there are more cell-cell 
contacts, and basal cells have access to the ECM.  As a result, 
3D cultures can better recapitulate in vivo models for 
investigating biological processes and drug responses.  For 
example, studies have shown that 3D systems are closer to in 
vivo in terms of tumor characteristics such as hypoxia and 
drug resistance [6] and can potentially reduce animal studies 
and improve the predictive value of drug efficacy [7]. 
Organoid models are often imaged using a confocal or a 
microscope equipped with an apotome and deconvolution, 
resulting in a 3D volumetric image stack. Identifying each 
nucleus in a 3D colony is essential to compute colony 
organization and positional protein measurements on a cell-
by-cell basis. The rationale is that for tumor cells, 3D colony 
organization can predict tumor subtypes [6] whereas 2D 
cultures reveal nothing about the subtype for the same cell 
lines. In addition, therapeutics can differentiate tumor 
subtypes, which can only be recognized in 3D [5]. These 
observations are the motivating factors in characterizing 
colony organization in terms of its nuclei and necessitating 
nuclei segmentation in 3D images.  

The current study aims to develop a dictionary of known 
breast cancer subtypes based on well-characterized cell lines. 
The dictionary can be represented as a heatmap and a classifier 
in terms of breast cancer subtypes. The heatmap is a powerful 
visualization tool since it gives insights into the comparative 
analysis of Patient-Derived organoids with known cell lines. 
The representation for each colony/organoid is based on its 
morphometric properties (e.g., roundness, elongation), which 
are important in breast cancer subtypes. For example, normal 
colonies should form hollow spheres, whereas malignant 
colonies should form solid spheres, elongated, or non-convex 
colonies. However, the basis for a colony representation is 3D 
nuclear segmentation, which is the focus of this manuscript. 
Here, we introduce 3D-Organoid-SwinNet, as shown in Fig. 
1, and it is motivated by recent advances such Swin-UNET [8] 
and SegFormer [9].  Here, we are motivated by developing 
and testing a simple architecture with a reduced number of 
parameters. Several model architectures were investigated, 
but the system in Fig. 1 produced the best results. 3D-
Organoid-SwinNet consists of an encoder and a decoder 
module. The encoder module consists of a Swin-transformer 
and multiscale convolutional layers. The decoder module 
consists of a multiscale MLP layer, upsampling, and a 
convolutional block. The latter convolutional block operates 
on a concatenation of scale-space upsampling blocks.  The 
central insight is that a rich representation can bypass 
secondary convolutional layers and replace them with the 
MLP layers with much fewer parameters.  One disadvantage 
of transformers is that more training data is typically required. 
However, taking advantage of global consistency outweighs 
the requirements for a more extensive training set. Finally, the 
efficacy of the proposed model is evaluated on four model 
systems of breast cancer subtypes.  

 The organization of this paper is as follows. Section II 
reviews prior literature. Section III outlines the approach. 
Section IV summarizes the results. Section V concludes the 
paper.  

II. RELATED WORKS 

    Computational approaches for profiling organoid models 
are either at low resolution using wide-field microscopy [10], 
high resolution using a confocal microscope, or a 
combination of the two [11]. One of the main barriers to high-
resolution microscopy is the sample thickness that exceeds 
the working distance of the microscope objectives. Some 
protocols include cryo-sectioning each spheroid for 2D 
imaging and nuclear segmentation [12]. Still, this approach 
requires accurate registration of adjacent sections and 
stacking the results together later. Because of the 
complexities associated with the imaging and analysis of 
organoid models, many protocols quantify organoids in terms 
of their gross size, morphometric features, and various 



fluorescent markers [13-16]; however, in some cases, these 
systems are also complemented with organoids cultured in 
microchips to allow for high throughput microscopy. 
Concerning high-resolution microscopy and nuclear 
segmentation, the main challenge is the variation in fixation 
and staining that leads to clumps of cells in 3D. One group of 
researchers used classical image analytic methods such as 
identifying points of maximum curvature or marker-based 
watershed for partitioning overlapping nuclei [17, 18]. 
During the last ten years, deep learning (DL) methods have 
significantly improved over classical techniques because of 
their intrinsic generalization associated with machine 
learning methods. Examples of these techniques include 
using shallow CNN for the detection of nuclei in 3D [19], 
UNET [20], and UNET with a modified loss function [21], 
among others. One of the rationales for incorporating a 
modified loss function is to enhance the partitioning of 
overlapping nuclei.  DL provides a suitable generalization of 
nuclear signatures (e.g., vesicular phenotypes, a continuum 
landscape of apoptosis, or fluorescent signature as a cell cycle 
function). However, DL is sometimes challenged by a clump 
of nuclei with no apparent boundaries due to fixation and 
staining. However, this issue can be alleviated by modifying 
the loss function [21][22]. 
 

III. METHODS 

In this section, we discuss the structure of our framework, 
illustrated in Fig. 1, which consists of Swin-Transformer 
blocks, 3D convolutional blocks, and MLP blocks.  

 

A. 3D-Organoid-SwinNet 

As illustrated in Fig. 1, the proposed framework comprises 
a Swin Transformer block, 3D convolutional blocks, and 

MLP (Multilayer Perceptron) blocks. The Swin Transformer 
block outputs feature at four different resolution scales, with 
further details provided in the subsequent section. Following 
the extraction of global features by the Swin Transformer 
block, the architecture utilizes five 3D convolutional blocks 
designed for local feature extraction. Subsequently, MLP 
blocks are employed to reconstruct the output shape, drawing 
inspiration from [9]. In the final stage, an additional 3D 
convolutional layer, equipped with a 1 � 1   kernel size, 
serves as the model's terminal layer. 
 

B. Swin-Transformer 

   Fig. 2 illustrates the Swin Transformer block, which 
comprises a 3D patch partition block, linear embedding, 
patch merging, and base Swin Transformer blocks, as 
presented in the Swin UNETR. In the initial step, the 
extracted patch, denoted as �  and with dimensions 
represented by � � � � � � �, is fed into the patch partition 
block, where H, W, and D denote the three dimensions of the 
3D patch and C represents the channel.  
In greater detail, �   is divided into N non-overlap patches 

where 	 
 ����
��  and � 
 ���

� �� ∈ �1, 	� � . In the 

subsequent layer, through an embedding layer, � is projected 
into a C-dimensional space. According to Fig. 2, the base 
Swin Transformer block comprises two layers. The first layer 
houses the W-MSA (Window-based Multi-head Self-
Attention) block, which partitions the inputs into non-
overlapping windows and calculates the local self-attentions 
for each window as follows [23]:  
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Fig. 1. The architecture of 3D-Organoid-SwinNet consists of an encoder and a decoder. The encoder consists of a Swin Transformer and multiscale 
convolutional layers. The decoder consists of multiscale MLP layers, upsampling, and one convolutional block for processing concatenated scale-space 
upsampled outputs. 



Where   , !, " denote query, key, and value, respectively, 
the widow size for the first layer is / − / − / . For the 

second layer, the window is shifted by 
1
2 , 1

2 , 1
2  voxels. Similar 

to the first layer, the attentions for each window are computed 
within the SW-MSA (Shifted Window Multi-Head Self-
Attention) block. The final output is calculated as: 
 
 

34 
 �-/6�78	��#9 + � 
 

34; 
 /8<78	�34#9 + 34 
     (2) 

32 
 6�-/6�78	�34; #9 + 34;  
 

32; 
 /8<78	�32#9 + 32 
 
Where 8	  and /8<  stand for Linear Normalization and 
Multi-Layer Perceptron. Whereas �-/6� and 6�-/6� are 
multi-head self-attention modules for regular and shifted 
partitioned windows, respectively.  
 

Figure 1 illustrates how the Swin Transformer processes 
the input data through four hierarchical stages, each 
incrementally reducing spatial resolution while increasing 

feature depth, i.e.,  =>
2 , ?

2 , 
2 , 48B ,  =>

C , ?
C , 

C , 96B , 

=>
F , ?

F , 
F , 192B and = >

4H , ?
4H , 

4H , 384B. These outputs then serve 

as inputs for 3D convolutions, which extract spatial features 
in a high dimensional space.  This model captures long range 
dependencies and similarities for 3D organoid segmentation. 

 

C. Implementation Details 

   The model was trained on a server with 8 Nvidia RTX 
2080TI GPUs with a total of 80GB RAM using PyTorch and 
MONAI. The learning rate is set to 0.0008. Input images with 
non-zero voxels are modified to have a zero mean and unit 
standard deviation. Random patches of 96 × 96 × 96 are 
cropped from 3D image volumes for training purposes. The 
model trained for 800 epochs with a batch size 1 per GPU. A 

sliding window approach is used for inference, with a voxel 
overlap 0.8 between nearby voxels. We incorporate a weight 
decay of 1e-4, dropout of 0.5 and utilize the Adam optimizer 
for model training. We implement a five-fold cross-
validation strategy to evaluate the model's performance 
robustly. An 80:20 split ratio between the training and 
validation data is maintained during each cross-validation 
fold. In this study, we utilized a range of data augmentation 
techniques to enhance the diversity and robustness of our 
training dataset. Specifically, we implemented RandFlipd, 
RandRotate90d, and RandShiftIntensityd functions. 
RandFlipd introduced random flips along specified spatial 
axes, RandRotate90d performed random 90-degree rotations, 
and RandShiftIntensityd randomly adjusted the intensity 
values of images. These augmentation methods were applied 
to our data's 'image' and 'label' keys with carefully chosen 
probabilities. 
 

D. Loss Function 

   Our loss function combines the widely adopted soft dice 
loss [24] with cross-entropy loss, leveraging the 
complementary strengths of both. This combined loss 
function is calculated on a voxel-wise basis. The resulting 
loss function is defined as: 
 

8�J, <# 
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The first term represents the Dice loss, while the second for 
binary cross-entropy loss.  [ denotes the number of classes, 
and J  and <  represent the ground truth and the output 
probabilities of the model, respectively. 
 

E. Postprocessing 

   The final step is thresholding the prediction, another 
hyperparameter used during the training, followed by a 3D 
connected component. Each colony is then represented in 
terms of nuclei organization and shape. Each nucleus within 
the colony is also represented in morphometric properties, 
protein expression, and location (e.g., basal versus luminal). 
 

F. Dataset details 

   One of the attributes of our approach is that our validation 
data included organoid cultures that are fixed on different 
days, and cells cover a wide mutation landscape of breast 
cancer cell lines. These include MCF10A, MCF7, MDA-
MB-231, and MDA-MB-468. MCF10A is non-malignant; 
MCF7 is estrogen- (ER) and progesterone- receptor (PR) 
positive and ERBB2 negative, and MDA-MB-231 MDA-
MB-468 are triple-negative (TNBC), i.e., ER, PR, and 
ERBB2. In 3D cultures, these cells can form a hollow sphere, 
a solid sphere, a sheet-like, or a grape-like structure [25, 26]. 
Notice that although MDA-MB-231 and MDA-MB-468 are 
both TNBC, their phenotypes differ. This is an important 
facet of our future research since we aim to classify 
phenotypes of primary cells into one of the four categories: 
hollow sphere, solid sphere, sheet-like, or grape-like. 
Furthermore, morphometric properties of nuclei tend to be 
different. For example, nuclei in MCF7 are larger and 

 

 

Fig. 2. The Swin Transformer block used in the 3D-Organoid-SwinNet 
architecture. 
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malignant nuclei tend to have a larger variation in shape and 
chromatin contents.  
 

Most of the dataset includes public data collected from a 
Zeiss confocal microscope. This dataset was extended with 
six new image stacks using Zeiss Axiovert equipped with an 
apotome and a 40X objective with a working distance of 650 
microns. This new dataset is continuously being extended, 
and we plan to include them in our ever-growing datasets. 
Furthermore, one significant feature of the dataset is the 
heterogeneity in image quality and microscopy, which 
promises a model with improved generalization.  
 

IV. RESULTS 

   The proposed model was compared to state-of-the-art 
models for 3D organoid segmentation on our data. 
 

A.  Validation and comparison 

Using our organoid dataset, we compared 3D-Organoid-
SwinNet against the previous year's winning approach, Swin 
UNETR. Table I summarizes the evaluation results. Our 
proposed 3D-Organoid-SwinNet model outperforms Swin 
UNETR [8], Large Language Model (e.g. SAM) [27] and 3D 
U-Net [28]. The 3D-Organoid-SwinNet achieves the highest 
performance, attaining a Dice score of 94.91 ± 0.50 and 
showcasing the trade-off between model complexity and 
segmentation accuracy of HD95 of 04.03 ± 0.05, with 21M 
parameters. This comparison highlights the advancements in 
segmentation techniques.  

 
   Fig. 3 visually compares the results obtained from our 
approach and those from other techniques. It demonstrates 
that our model, 3D-Organoid-SwinNet, outperforms the 
alternatives, particularly in the context of morphogenesis 
analysis. In morphogenesis analysis, the precise delineation 
of individual cells is crucial for understanding how tissues 
develop and organize themselves. The merging of cells, as 
observed in the outputs of other methods, can obscure 
essential details and hinder accurate analysis of 
morphogenetic processes. Therefore, 3D-Organoid-
SwinNet's superior performance in preserving cell 
boundaries is advantageous for conducting thorough 

morphogenesis studies and gaining deeper insights into tissue 
development.  
 

 

B. Ablation study 

   Ablation studies include the effect of different numbers of 
nodes in MLP layers and the different loss functions. 
   Effect of the Number of Nodes in MLP Layers: We 
empirically analyzed our proposed framework by varying the 
number of MLP (Multilayer Perceptron) layers. 
The metrics evaluated include the Dice coefficient, HD95, 
and the number of parameters for each configuration. The 
number of nodes considered in this study were 128, 192, 384, 
and 768. Table II visually represents the effectiveness of 
different numbers of nodes of MLP layers within our 
framework. This analysis helps understanding and 
understanding the trade-offs between model performance and 
complexity, guiding the selection of an optimal number of 
nodes, which was 384 for the proposed method.  

    

   Effect of Loss Function: In our study, we also conducted 
an empirical analysis of our proposed framework using 
various loss functions, as detailed in Table III.  
 

 
 
When trained with the Dice loss function (Ldice), the model 
achieved a Dice score of 93.07 and HD95 of 04.87. Using the 
Focal loss function (Lfocal), the score improved slightly to 
93.11 with 04.58 of HD95. The LCeDice loss function achieved 
the best performance with a Dice score of 94.91 and an HD95 

TABLE III 

THE IMPACT OF EACH LOSS FUNCTION FOR THE PROPOSED 

FRAMEWORK 

 

Loss Function Dice HD95 

8-�\] 93.07 04.87 

8^_\`a  93.11 04.58 

 8b]�\] 94.91 04.03 

TABLE II 

SIMULATION STUDY FOR DETERMINING THE NUMBER OF NODES IN 

THE MLP LAYERS 

 

No. of Nodes Dice HD95 Parameters 

128 88.50 07.89 18.19 M 

192 89.59 07.10 19.28 M 

768 85.01 10.14 24.50 M 

384 94.91 04.03 21.04 M 

GT 3D U-NET 
Swin 

UNETR 

3D-

Organoid-

SwinNet 

    

Fig. 3. Comparison of 3D-Organoid-SwinNet with prior art indicates 
superior performance in terms of segmentation quality since adjacent 
nuclei are not merged.  As a result, a more robust proliferation index 
is computed. 

TABLE I 
3D-ORGANOID-SWINNET IMPROVES SEGMENTATION PERFORMANCE 

OVER ALTERNATIVE MODELS.  

 

Method Dice HD95 Parameters 
OTSU 

Thresholding 
64.67 ± 1.80 

 
19.51 ± 0.13 N/A 

Segment 
Anything 2D 

 

77.73 ± 0.75 
 

14.36 ± 0.12 91M 

3D U-NET 80.65 ± 0.56 
 

11.55 ± 0.09 95M 

Swin UNETR 89.74 ± 0.44 
 

07.42 ± 0.08 61M 

3D-Organoid-
SwinNet 

94.91 ± 0.50 04.03 ± 0.05  21M 

 



of 04.03, outperforming other loss functions in our 
segmentation framework. 
 

C. An application of high content profiling in terms of 

morphogenesis 

   In this study, we conducted morphogenesis analysis across 
multiple model cell lines, where the organization of colonies 
was profiled using multiparametric techniques, notably 
employing Delaunay triangulation for neighborhood 
analysis. The mean computed indices are then visualized with 
a heatmap, as shown in Fig. 4. These four cell lines 
correspond to breast cancer subtypes with known molecular 
aberrations that lead to unique phenotypes. This is evident by 
MDA-MB-231, which grows in a planar geometry (cultured 
using the “ontop” method) and is more elongated than the 
non-malignant MCF10A. As a result, cell lines can serve as a 
dictionary or a model for predicting the molecular aberrations 
from Patient-Derived organoids with unknown 
characteristics. For example, indices computed from the 
Patient-Derived organoids at a specific date of fixation can 

correlate with the relevant columns of the heatmap to find the 
closest match.  Although similar analyses can be performed 
with transcriptomic or other molecular profiling, they are not 
functional assays and do not capture relevant 3D structures. 

V. CONCLUSION 

   In this study, we proposed 3D-Organoid-SwinNet, a unique 
architecture designed for the semantic segmentation of 
organoids. Our model has a U-shaped network architecture, 
with a Swin transformer as the encoder and a decoder 
augmented with an MLP layer that is inspired by a SegFormer 
framework. We established the efficacy of our approach by 
validating it on our organoid dataset. The proposed method 
has only 21M parameters and achieves a new state-of-the-art 
in terms of the mean Dice and HD95 scores. Our 
model performs better than the Swin UNETR with fewer 
parameters.  One of the attributes of our design is to validate 
organoid formation using multiple cell lines with diverse 
molecular aberrations. For example, MCF7 is ER- and PR-
positive; MDA-MB-231 is ER-, PR-, and ERBB2-negative; 
and MDA-MB-468 is ERBB2-positive. As a result, the 

 

Fig. 4. The multiparametric analysis is visualized for colony organization across various cell lines. This analysis incorporates multiple parameters and offers 
insights into cellular dynamics and organization across different cell lines. 



computational method is stress-tested under a diversity of 
molecular aberrations. Furthermore, the 3D phenotypes of 
these cell lines serve as a dictionary for correlative studies of 
Patient-Derived organoids with unknown molecular 
characteristics. Our future research focuses on profiling 
Patient-Derived organoids and predicting their molecular 
signatures based on the model systems constructed in our 
current efforts.  
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